

Ausführung und Einsatzbereich

Die Messgeräte RA 87 und FA 87 arbeiten nach dem Schwebekörperprinzip.

Der Einbau in Rohrleitungen erfolgt bei RA 87 mittels Innengewinde oder Rohrverschraubung, bei FA 87 erfolgt die Montage zwischen Flanschen. Der Messkonus aus Borosilicatglas befindet sich in einer Edelstahlschutzhülse mit Sichtfenster.

Alle messstoffberührten Teile sind aus Edelstahl 1.4571 gefertigt.

Die Schwebekörperdurchflussmesser
RA 87 und FA 87 eignen sich zur
Durchflussmessung von durchsichtigen
Flüssigkeiten und Gasen.
Jedes Gerät wird für den jeweiligen
Kundenbedarf mit einer messstoffspezifischen
Skala ausgestattet. RA 87 und FA 87
finden ihre Anwendung hauptsächlich
in der chemischen Industrie,
in Wasseraufbereitungsanlagen, in der
Nahrungsmittelindustrie und im sonstigen
Anlagenbau.

Durch den Einbau von elektrischen Grenzwertschaltern, die über den gesamten Messbereich verstellbar sind, lassen sich die Geräte auch als Wächter einsetzen.

Ebenso lässt sich durch den Einbau eines Linearwegsensors ein zur Höhenstellung des Schwebekörpers proportionales Ausgangssignal erzeugen.

Eine genaue Erläuterung der Funktionsweise und des Messprinzips von Schwebekörperdurchflussmessgeräten finden Sie in unseren technischen Unterlagen.

RA 87 / FA 87

- kalibrierter Messkonus aus Borosilicatglas
- Armatur komplett in Edelstahl
- Plexiglashalbschale als Splitterschutz
- zuverlässig durch einfache Funktionsweise
- messstoffspezifische Skala
- optional
 - Grenzwertschalter
 - Analogausgang 4 ... 20 mA
 - explosionsgeschützte Ausführung
 - PVDF Auskleidung zur Durchflussmessung von aggressiven Fluiden

Baureihen

RA 87 G	mit Innengewinde
RA 87 Rp	mit zweiteiliger Rohrverschraubung
FA 87	mit Flanschanschluss
RA / FA 87-MSK1	mit Grenzwertschalter (Öffner)
RA / FA 87-MSK12	mit Grenzwertschalter (Schließer)
RA / FA 87-MSKW	mit Grenzwertschalter (Wechsler)
RA / FA 87-EM	mit Analogausgang 4 20 mA
RA / FA 87 Ex	explosionsgeschützte Ausführung

Technische Daten

Nenndruckstufe	FA 87: PN 10 bei 20 °C RA 87: PN 10 bei 20 °C
Max. Betriebsdruck	siehe Tabelle Messbereiche auf Seite 3
Temperaturbeständigkeit	80 °C, optional: 100 °C
Umgebungstemperatur	90 °C
Messspanne	1:10
Genauigkeitsklasse Fehlergrenzwert (G) Linearitätsgrenze (qG)	VDE/VDI 3513 Blatt 2 (08/2008) 1,6 % 50 %
Anschluss RA 87	G: zylindrisches Innengewinde nach ISO 228 Rp: zweiteilige Rohrverschraubung: Einlegeteil mit zylindrischen Innengewinde nach DIN EN 10226-1 (ISO 7-1)
Anschluss FA 87	Flansche PN 10 nach DIN EN 1092-1, andere (ANSI, JIS,) auf Anfrage

Materialien

Schutzhülse	1.4301
Köpfe RA 87	1.4571, optional: PVDF ²⁾
Zweiteilige Verschraubung	1.4571, optional: PVDF ²⁾
Flansche FA 87	1.4571, optional: mit PVDF inlay ²⁾
Messglas	Borosilicatglas
Splitterschutz	Plexiglas
Dichtungen	Standard: FPM optional: EPDM, FFKM (Perlast), Silikon
Schwebekörper für Flüssigkeiten ¹⁾	Standard: 1.4571 optional: Hastelloy C4
Schwebekörper für Gase ¹⁾	Standard: PTFE optional: PVC, PVDF, PP, Aluminium
bei Grenzwertschalter ¹⁾	Standard: 1.4571 mit Magnetkern für Luft: PTFE mit Magnetkern optional: PP, PVDF, PTFE (jeweils mit Magnetkern)
Sonderausführung ²⁾	Korrosionsschutz aller medienberührter Teile

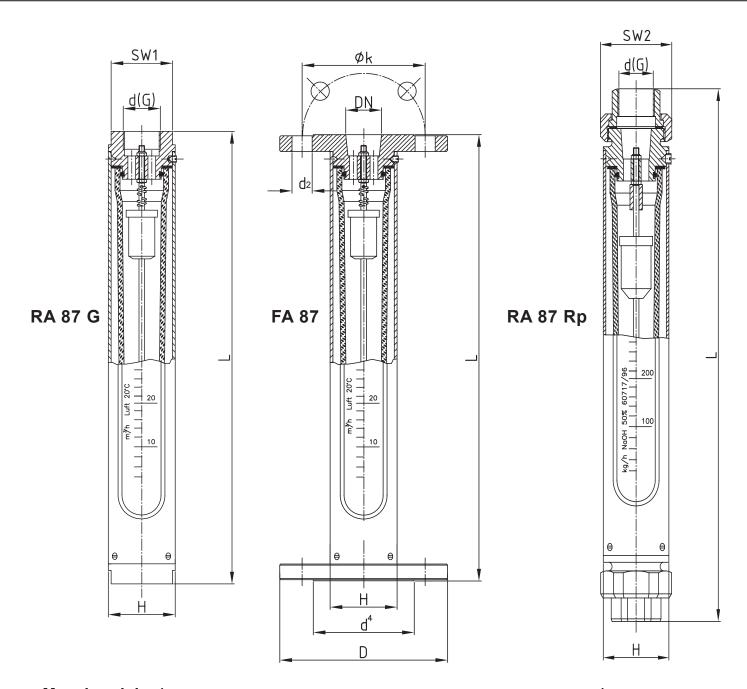
andere Materialien auf Anfrage

Maße

RA 87	RA 87 mit Innengewinde									
Größe	G	DN	SW1 ²⁾	d 1)		Н				
9,5	1/ ₄ 3/ ₈	10 15	20	12 16	266	25				
19	1/2 3/4 1	15 20 25	40	20 25 30	366	44,5				
30	1 1 ¼	25 32	55	32 40	366	60				
36	1 ¼ 1 ½	32 40	65	40 50	366	70				
43	1 ½ 2	40 50	82	50 63	366	89				

nur bei Kunststoff PVC-Klebemuffen und PP-, PVDF-Schweißmuffen

²⁾ nur bei 1.4571 Ausführung


RA 87 mit Rohrverschraubung										
Größe	(1.4571)	Ausführ	ung	Kuns	Kunststoffausführungen					
	Gewinde	L	SW ²	DN	d 1)	L (PVC)	L (PP, PVDF)			
9,5	Rp 1/4 Rp 3/8 Rp 1/2	306 309 314	27 32 41	10 15	16 20	302 305	304 305	25		
19	Rp ½ Rp ¾ Rp 1	414 416 422	41 50 55	15 20 25	20 25 32	405 411 417	405 409 413	44,5		
30	Rp 1 Rp 1 ¼ Rp 1 ½	422 428 429	55 70 75	25 32 40	32 40 50	423 432 442	419 424 430	60		
36	Rp 1 ½ Rp 1 ½ Rp 2	428 429 433	70 75 90	32 40 50	40 50 63	432 442 456	424 430 438	70		
43	Rp 1 ½ Rp 2	429 433	75 90	40 50	50 63	448 462	436 444	89		

¹) nur bei Kunststoff PVC-Klebemuffen und PP-, PVDF-Schweißmuffen

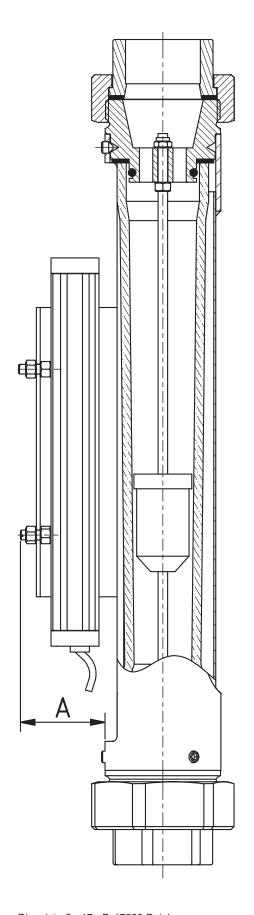
FA 87									
Größe	DN	L	Н	D	d ⁴	k	Schraul Anzahl	oen Gewinde	d ²
9,5	10 15	260	25	90 95	40 45	60 65	4 4	M12 M12	14 14
19	10 15 20 25	360	44,5	90 95 105 115	40 45 58 68	60 65 75 85	4 4 4 4	M12 M12 M12 M12	M12 14 14 14
30	25 40	360	60	115 150	68 88	85 110	4	M12 M16	14 18
36	40 50	360	70	150 165	88 102	110 125	4	M16 M16	18 18
43	50 65	360	89	165 185	102 122	125 145	4 4	M16 M16	18 18

¹⁾ Der Schwebekörper ist bei kleinen Größen ungeführt; ab Größe 30 teilweise mit Führungsstange. Auf Anfrage erhalten Sie von uns eine detaillierte Tabelle.

PVDF Auskleidung: Alle medienberührte Teile, außer dem Messglas, sind aus PVDF.

Messbereiche (min. und max. Messbereich; alle Zwischenmessbereiche möglich)

Göße	Messbe	ereich	n H ₂ O		Messbe	reich	Luft i.1	V. ¹⁾					Anschlüsse			
	Schwel alle Ma				Schweb PTFE, F				Schwe PVC,		körper		RA 87 Innengewinde		7 Flansch- chluss DN	max. Betriebsdruck in bar bei 20 °C
9,5	0,5 20	-	5 200	l/h l/h	8 0,28	-	80 2,8	l/h m³/h	8 0,2	-	80 2	l/h m³/h	1/4 3/8	10 15		10
19	12 0,12	-	120 1,2	l/h m³/h	0,15 1,6	-	1,5 16	m³/h m³/h	0,14 1,2	-	1,4 12	m³/h m³/h	1/ ₂ 3/ ₄ 1	15 20 25		10
30	0,1 0,3	-	1 3	m³/h m³/h	1,2 3	-	12 30	m³/h m³/h	0,85 2	-	8,5 30	m³/h m³/h	1 1 ½	25 40		10
36	0,4 0,8	-	4 8	m³/h m³/h	3,5 8	:	35 80	m³/h m³/h	2,5 5	-	25 50	m³/h m³/h	1 ½ 1 ½	40 50		8
43	0,9 1,6	-	9 16	m³/h m³/h	8 16	-	80 160	m³/h m³/h	6 12	-	60 120	m³/h m³/h	1 ½ 2	50 65		8


Messbereiche für andere Messstoffe und Betriebsbedingungen erhalten Sie auf Anfrage.

1) i.N.: im Normzustand (0 °C und 1013 mbar abs.)

RA / FA 87-EM

Glasgröße	A	
9,5	45	
19	37	
30	45	
36	46	
43	47	

Grenzwertschalter MSK1/MSK12/MSKW

Um eine Vorortanzeige mit Überwachungsfunktion zu realisieren, lässt sich das Durchflussmessgerät mit Grenzwertschaltern ausrüsten. Der Grenzwertschalter besteht aus einem Steckergehäuse und einem bistabilen Reedkontakt. Ein in den Schwebekörper integrierter Magnet schaltet diesen Reedkontakt. Der Grenzwertschalter wird in einem Führungsschlitz auf der Rückseite der Schutzhülse geführt und kann über den vollen Messbereich verstellt werden. Bei induktiven oder kapazitiven Belastungen, z. B. durch Schütze oder Magnetventile, können unkontrollierbare Strom- und Spannungsspitzen auftreten. Auch bei Leitungen ab einer gewissen Länge, abhängig von der Geometrie der Leitungen, treten solche Spitzen auf. Daher empfiehlt sich die Verwendung eines zusätzlich lieferbaren Kontaktschutzrelais MSR. Dieses erhöht die Schaltleistung und verhindert das Auftreten von induktiven und kapazitiven Spitzen. Es gewährleistet somit eine lange Lebensdauer der Grenzwertschalter.

Technische Daten der Grenzwertschalter

Ausführung	MSK1	MSK12
Schaltspannung	50 V AC/75 V DC	50 V AC/75 V DC
Schaltstrom	max. 0,5 A	max. 0,5 A
Schaltleistung	max. 10 W/VA	max. 10 W/VA
Spannungsfestigkeit	230 V AC/400 V DC	230 V AC/400 V DC
Temperaturbereich1)	-20 +90 °C	-20 +90 °C
Schaltfunktion	Öffner, bistabil	Schließer, bistabil
Anschlussbild	1 BN 2 WH)1 BN ~~
Ausführung	MSKW	
Ausführung Schaltspannung	0 100 V DC	
·		
Schaltspannung	0 100 V DC	
Schaltspannung Schaltstrom	0 100 V DC max. 0,5 A	
Schaltspannung Schaltstrom Schaltleistung	0 100 V DC max. 0,5 A max. 5 W/ VA	
Schaltspannung Schaltstrom Schaltleistung Spannungsfestigkeit	0 100 V DC max. 0,5 A max. 5 W/ VA 200 V DC	

¹⁾ Bitte die Temperaturbeständigkeit des Durchflussmessgerätes beachten.

Linearwegsensor EM

Der auf dem Hall-Prinzip basierende Linearwegsensor liefert ein zur Höhenstellung des Schwebekörpers proportionales Ausgangssignal. Dieses kann in 4 ... 20 mA oder 0 ... 10 V zur Anzeige gebracht werden, um eine Fernanzeige realisieren zu können. Angeschlossen wird der Sensor über den mitgelieferten M12 x 1mm Stecker.

- kompakte Bauform
- sehr hohe Reproduzierbarkeit
- Messbereich Anzeige über LED
- ideal f
 ür die Einbindung in SPS
- Realisierung von Fernübertragungen

Bitte beachten Sie, dass der Sensor eine Blindzone im Bereich von 3,7 mA bis ca. 4 mA besitzt und erst ab ca. 4 mA stabil arbeitet.

Technische Daten Linearwegsensor EM

Messbereich	160mm, 125mm
Wiederholgenauigkeit	≤ 0,1 % vom Messbereich ≤ abhängig vom Positionsgeber
Linearitätsabweichung	≤ 1 % v.E.
Temperaturdrift	$\leq \pm 0,006 \%/K$
Umgebungstemperatur 1)	-25 +70 °C
Betriebsspannung	15 30 V DC
Leerlaufstrom	≤ 15 mA
Ausgangsfunktion	Vierdraht, Analogausgang
Spannungsausgang → Lastwiderstand	$0 \dots 10 \text{ V}$ $\geq 4.7 \text{ k}\Omega$
Stromausgang → Lastwiderstand	4 20 mA ≤ 0,4 kΩ
Abtastrate	200 Hz
Anschluss	Steckverbinder, M12 x 1
Schutzart	IP67
Betriebsspannungsanzeige	LED, grün
Messbereichsanzeige	LED, gelb, Positionsgeber im Erfassungsbereich
Anschlussbild	1 BN + 4 BK U

¹⁾ Entscheidend ist die Temperaturbeständigkeit des Durchflussmessgerätes.

Noti	zen

Notizen	

Niederspannungsrichtlinie

Oberhalb 50 V AC/75 V DC unterliegen die Grenzwertschalter der EU-Niederspannungsrichtlinie. Der Anwender muss ihren Einsatz entsprechend prüfen.

Bestimmungsgemäße Verwendung

Der Anwender verantwortet die Beurteilung hinsichtlich der Eignung der Durchflussmessgeräte für seinen Einsatzfall, der bestimmungsgemäßen Verwendung und der Materialverträglichkeit hinsichtlich des von ihm gefahrenen Mediums.

Der Hersteller haftet nicht für Schäden, die aus dem unsachgemäßen oder nicht bestimmungsgemäßen Einsatz der Geräte entstehen.

Druckstöße können zu Glasbruch führen. Diese sind generell zu vermeiden. Die im Datenblatt angegebenen Grenzwerte sind einzuhalten. Genauere Informationen entnehmen Sie den Einbauempfehlungen der Richtlinie VDI/VDE 3513 Blatt 3.

Die Geräte der Firma **Kirchner und Tochter** sind nach den einschlägigen EU CE Richtlinien geprüft. Auf Anfrage erhalten Sie eine entsprechende Konformitätserklärung. Änderungen ohne vorherige Ankündigung bleiben vorbehalten. Die aktuell gültige Version unserer Dokumentation finden Sie unter www.kt-flow.de.

Das **Kirchner und Tochter** QM-System ist nach DIN EN ISO 9001:2015 zertifiziert. Es wird eine systematische Qualitätsverbesserung in ständiger Anpassung an die immer höher werdenden Anforderungen betrieben.